
Introduction to Qt Container
Classes

Robert Felten
Independent Software
Development Engineer
www.robertfelten.com
robert@robertfelten.com

 10/4/13 www.robertfelten.com

Contents
•  Introductory Material
•  QList
•  QMap
•  QHash
•  QStack / QQueue
•  QString

10/4/13 www.robertfelten.com

About Robert Felten
•  70s

–  Hughes Aircraft Copany
•  Space and Comm – El Segundo

•  80s
–  Contractor at TRW

•  Space and Comm – Manhattan Beach

•  90s to 2007
–  Raytheon

•  Space and Airborne Systems – El Segundo

•  2007 to 2012
–  Applied Signal Technology

•  2012 to present
–  Independent Contractor – with IDT and PCM-Sierra

10/4/13 www.robertfelten.com

Container Classes
•  Mid 90s – learned C++

–  Radar instrumentation
•  Custom library – dynamic arrays, linked lists, strings

–  Didn’t even use templates.

–  Discovered STL
•  Effective C++, Effective STL
•  Began using in all my applications

•  2009 – took over Qt program
–  Horrified to discover they were using Qt custom

library
•  QStrings, QLists, QMaps, QHash, etc.

–  First tried to mix existing Qt code with STL containers
10/4/13 www.robertfelten.com

Changed My Mind
•  After a while – I discovered

•  I LIKED Qt Containers
•  Why?

10/4/13 www.robertfelten.com

To answer the question
•  Why I dumped the STL and Boost libraries

–  And now use Qt container classes exclusively

•  Qt Containers have….
–  More intuitive interfaces
–  More powerful built-in functions
–  More efficient implementations
–  More flexible options
–  Great online documentation
–  Sample code and demos

•  Note - Not comparing C++ 11 / 14

10/4/13 www.robertfelten.com

Container Comparisons
•  Comparing STL and Qt containers

–  Most containers in STL have Qt equivalent, and Vice
Versa.

–  Most containers have similar constructors, iterators,
functions, and algorithms.

–  Qt containers usually have additional constructors,
operators, and functions.

•  Also java-style iterators for those so inclined.

–  Qt has added a foreach keyword (implemented in the
C++ preprocessor)

•  for efficiently iterating over all members.

–  Some containers are implicitly shared
•  You can pass them by value efficiently.

10/4/13 www.robertfelten.com

Color Code for Comparisons
•  Comparisons of STL vs Qt

–  Features in common between STL and Qt are in black
type.

–  Features unique to Qt are in green type.
–  Features unique to STL are in red type.

10/4/13 www.robertfelten.com

Similar Containers

STL Containers Qt Containers Internal Structure
vector QVector Dynamic Array, adjacent storage

QList Dynamic Array
list QLinkedList Doubly Linked List
set/multiset QSet/QMultiset Sorted list of values
map/multimap QMap/QMultiMap Sorted list of key/value pairs
hash (Boost only) QHash/QMultiHash Unsorted array of key/value pairs
stack QStack Last in First Out dynamic array
queue QQueue First in First Out dynamic array
string QString Array of characters

QStringList QList of QStrings

10/4/13 www.robertfelten.com

First choice container
•  stl::vector is the usually the most appropriate

container
–  Use stl::vector 90% of the time you need dynamic

storage.
–  QList should be used even more often (if not quite

100%)

10/4/13 www.robertfelten.com

QList<T>
•  The workhorse of Qt Container Classes
•  Similar to std::vector

–  Fast indexed based access
–  Does not store data in adjacent memory positions

•  If you need adjacent memory, use Qvector.
•  If size of T > size of pointers, stores data as array of pointers
•  Otherwise, stores T itself

–  Fast insertions and removals (see next slide)
–  Not a linked list that guarantees constant time inserts

•  Use QLinkedList

10/4/13 www.robertfelten.com

QList Advantages
•  Advantages over std::vector

–  More natural syntax for insertions
–  For < 1000 entries, very fast insertions in middle
–  Convenience functions gives more utility.
–  Powerful built-in algorithms
–  Easily convertible to/from other container classes
–  Alternate names and syntax for same functions

•  Gives your code a more natural self-documentation

10/4/13 www.robertfelten.com

Other features of interest
•  Memory pre-allocated at both ends.

–  Constant time prepend and append in most cases.

•  Constant time access by index
•  Direct index just as fast as iterators.
•  Includes STL-Style iterators and functions for

convenience

10/4/13 www.robertfelten.com

Accessing Values in QList
•  const T& operator[](int i), same as

const T& at(int i)
–  returns value at position i (constant time)
–  assert error if index out of range (in debug mode)
–  if index out of range, STD::vector [] returns garbage,

at throws exception for if index out of range
–  value(int i)
–  returns value at index i, returns default constructed T

if index out of range.
•  value(int i, const T defaultValue)

–  returns value at index i, returns defaultValue if index
out of range.

10/4/13 www.robertfelten.com

Values in Qlist(cont.)
•  T & front(), overloaded with const T & front()

same as first()
–  returns first entry in the list.

•  T & back(), overloaded with const T & back()
same as last()
–  returns last entry in the list.

•  iterator begin()
–  Returns STL-style iterator pointing to first item in list

•  iterator end()
–  Returns STL-style iterator pointing to imaginary item

past end of list
10/4/13 www.robertfelten.com

Inserting Values in QList
•  Inserting values at end

•  QList<T>& operator <<(const QList<T> & other)
–  a << “Mercury” << “Venus” << “Earth” << “Mars”;

•  operator +() and +=()
–  a += “Mercury” + “Venus” + “Earth” + “Mars”;

•  push_back()
–  a.push_back(“Mercury”);
–  a.push_back(“Venus”);
–  a.push_back(“Earth”);

•  void append(const T &value)
–  a.append(“Mercury”);

10/4/13 www.robertfelten.com

Inserting Values (Cont.)
•  Inserting in Middle

–  insert(int i, const T &value)
•  inserts value at position i.

–  insert (iterator before, const T &value)
•  inserts value before iterator.

10/4/13 www.robertfelten.com

Removing entries from QList
•  void pop_front(), removeFirst()

–  removes first entry

•  T takeFirst()
–  removes first entry, and also returns it.

•  pop_back(), removeLast()
–  removes last entry, does not return it

•  T takeLast()
–  removes last entry, and also returns it.

10/4/13 www.robertfelten.com

Removing Entries (cont.)
•  removeOne(const T & value)

–  removes first occurrence of value.

•  removeAll (const T &value)
–  removes all occurrences of value.

•  removeAt (int i)
–  removes element at index i.

•  takeAt (int i)
–  removes item at index j, and also returns it.

•  removeAll(), same as clear()
–  removes all items from list.

10/4/13 www.robertfelten.com

Removing Entries (cont.)
•  iterator erase(iterator pos)

–  Removes item at iterator, returns iterator to next entry

•  iterator erase(iterator begin, iterator end)
–  Removes items from begin up to but not including end

10/4/13 www.robertfelten.com

Swapping Functions in Qlist
•  move (int from, int to)

–  moves item from position “from” to position “to”

•  replace (int I, const T &value)
–  replaces item at index i with value.

•  swap(int i, int j)
–  swaps elements at index positions i and j.

10/4/13 www.robertfelten.com

Additional QList Functions
•  Append a QList to the end of a QList

•  QList<int> a;
•  QList<int> b;

–  void append (const QList<T> &value)
•  app4.append(b);
•  QList<int> app1 = a + b;

•  QList<int> app2= a << b;

•  QList<int> app3 = a;
•  app3+= b;

•  QList<int> app4 = a;

10/4/13 www.robertfelten.com

QList Subsets
•  Obtain subsets of a QList

–  QList<T> mid (int pos, int length) – returns a list
copied from pos, to length or end)

–  Examples:
•  Get first 5 entries:

–  a.mid(0, 5)
•  Get last 5 entries:

–  a.mid(mid.length() – 5)
•  Get 8 entries starting with entry[3] :

–  a.mid(3,8)

10/4/13 www.robertfelten.com

QList Built-in Algorithms
•  bool contains(const T &value)

–  returns true if QList contains an occurrence of the
value

•  bool startsWith (const T & value)
–  returns true if QList starts with value.

•  bool endsWith(const T &value)
–  returns true if last entry in QList is value

•  int indexOf (const T &value, int from = 0)
–  returns index of first occurrence of value.

•  int lastIndexof (const T &value, int from) –
–  returns index of last occurrence of value.

10/4/13 www.robertfelten.com

QList Conversions
•  toSet – converts QList to QSet.
•  toStdList – converts QList to std::List
•  toVector – converts QList to QVector.
•  fromSet – converts QSet to QList
•  fromStdList – converts std::list to QList
•  fromVector – converts QVector to QList

10/4/13 www.robertfelten.com

QList Sizing
•  int size(), same as count(), length()

–  returns number of items in the list

•  bool isEmpty(), same as empty()
–  returns true if no items in the list

•  void reserve(int alloc)
–  Reserves space for alloc elements.

10/4/13 www.robertfelten.com

QList Constructors,...
•  Constructors

–  QList()
•  creates empty list

–  QList(const QList<T> &other)
•  copy constructor

–  QList(std::Initializer_list<T> args)
•  Only for C++0x compiler

•  Equivalence
–  bool operator== (const QList<T> &other

•  Assignment
–  T& operator=(const QList<T> &other)

10/4/13 www.robertfelten.com

Missing in QList
•  Functions from std::vector not in QList

–  Constructor initializing values
–  Assigning n copies of element n
–  Providing your own allocator
–  Getting capacity and max_size
–  accessing values as ordinary array

•  &a[i].
–  If you need this feature, use QVector.

10/4/13 www.robertfelten.com

QList Examples
•  Some examples of QLists that I used in my SDD

manager application
–  Information stored for each device, where number of

devices are discovered by program after it starts
running.

–  Namespaces (created inside devices) that can be
added and deleted by users.

–  Information read from XML files.
–  Data added and deleted by users.
–  Data generated after number of devices discovered.

10/4/13 www.robertfelten.com

QMap <T>
•  Similar to std::Map

–  Used when associating values with keys.
•  QMap stores (key,value pairs) sorted by key
•  Because STL did not contain a hash table, I tended to always

use maps to store (key,value) pairs.
–  Don’t use QMap unless you need the pairs stored in key order

•  Use QHash if you don’t need keys sorted

•  Differences from std::map
–  Remembers multiple values associated with keys

•  Not handled same way as multipmap / QMultiMap

–  Many additional features and functions

10/4/13 www.robertfelten.com

Accessing Items in QMap
–  T &operator[] (const Key &key)

•  returns value associated with key, as modifiable reference.
•  if map contains no item associated with key, the function

inserts a default constructed item into map, and returns a
reference to it.

•  if map contains multiple values associated with key, returns
reference to most recently inserted value.

–  const T operator[] (const Key &key)
•  same as value, except returns a const value instead of

reference.

10/4/13 www.robertfelten.com

Accessing Items (cont.)
–  const T value (const Key & key)

•  returns value associated with key.
•  if no item with key, returns default constructed value.
•  If more than one item with key, returns most recently added

value.

–  const T value (const Key &key, const T
&defaultValue)

•  if no item with key, returns defaultValue

–  QList<T> values() const
•  returns a list containing all the values in the map, in

ascending order of their keys.
•  if more than one item with same key, all values are included.

–  QList<T> values (const Key & key)
•  returns a list containing all values associated with key. 10/4/13 www.robertfelten.com

Accessing Items (cont.)
–  iterator begin(), overloaded with const_begin()

•  returns iterator or const_iterator to first item in QMap

–  iterator end(), overloaded with
•  returns iterator or const_iterator to imaginary item after the

last item in the map.

–  iterator find(const Key key)
•  returns iterator pointing to item with key key.
•  If multiple items with key, returns iterator pointing to most

recently entered value. Other values accessible by
incrementing the iterator.

–  QMap<QString, int> map; ... QMap<QString,
int>::const_iterator i = map.find("HDR"); while (i != map.end()
&& i.key() == "HDR") { cout << i.value() << endl; ++i; }

10/4/13 www.robertfelten.com

Accessing Items (cont.)
–  const Key key(const T &value, const Key

&defaultKey) const
•  returns the first key associated with value value, or

defaultKey if map does not contain value)
•  linear time, map optimized to for fast lookups by key

–  QList<Key> keys() const
•  returns a Qlist containing all the keys in the map
•  duplicate keys occur multiple times in the list.

–  QList<Key> uniqueKeys() const
•  returns a list of keys, where each key only occurs once

–  iterator lowerBound(const Key &key)
•  returns iterator pointing to first item with key in the map.
•  If key not in map, returns iterator to nearest item with greater

key.
10/4/13 www.robertfelten.com

Accessing Items (cont.)
•  iterator upperBound (const Key & key)

–  returns iterator pointing to item that immediately
follows the last item with key.

–  if map does not contain key, returns iterator to nearest
item with a greater key.

10/4/13 www.robertfelten.com

Inserting Items in QMap
–  iterator insert(const Key &key, const T & value)

•  inserts a new item with key key, and value of value.
•  If there is already an item with key, value is replaced.

–  interator insertMulti(const Key &key, const T &value)
•  same as insert, except if already an item with key, adds a

new value associated with key.

10/4/13 www.robertfelten.com

Removing Items from QMap
–  clear()

•  removes all items in map

–  iterator erase (iterator pos)
•  removes the (key,value) pair pointed to by pos, returns

iterator to next item in map.

–  int remove(const Key & key)
•  Removes all items that have key in map. Returns number of

items removed

–  T take (const Key& key)
•  Removes the item with key, and returns the value.
•  If multiple values, only most recent is removed and returned.

10/4/13 www.robertfelten.com

QMap Extra Functions
–  void swap(QMap<Key, T> &other

•  swaps map with other. Very fast / guaranteed not to fail.

–  QMap<Key, T> &unite() (const QMap<Key, T> &other
•  Inserts all the items in other map into this map.

10/4/13 www.robertfelten.com

QMap Constructors
•  QMap()

–  default constructor – empty map

•  QMap(const QMap<Key, T> & other)
–  copy constructor

•  QMap(const std::map<Key, T> &other)
–  converts from STL Map

10/4/13 www.robertfelten.com

Qmap Sizing, operators
–  int count(), same as size()

•  returns number of items (key/value pairs) in the map.

–  isEmpty(), same as empty()
•  returns true if map contains no items.

–  bool operator== (const QMap<Key, T) &other)
•  returns true if other is equal to this map, i.e. contain the same

(key,value) pairs.

–  bool operator!= (const QMap<Key, T>& other)
•  returns true if other is not equal to this map

–  QMap<key, T> & operator= (const QMap<Key, T>
&other)

•  assigns QMap other to this one.

10/4/13 www.robertfelten.com

QMap Built-in Algorithms
•  bool contains (const Key &key)

–  returns true if map contains an item with key key

•  int count (const Key &key)
–  returns number of items associated with key

10/4/13 www.robertfelten.com

QMap Conversions
•  std::map<key, T> toStdMap() const

–  converts QMap to std::map.

10/4/13 www.robertfelten.com

Missing in QMap
–  map (op) – constructor using op as sorting criteria
–  max_size()
–  operators <, <=, >, >=
–  equal_range algorithm
–  rbegin, rend (reverse iterators)
–  insert (pos, elem) – pos is a hint where to start search
–  erase (beg, end) – erase items from beg to end

10/4/13 www.robertfelten.com

QMap Examples
•  map that associates strings with enumerated

values (rather than enumerated values with
strings)

•  map that associates revision ID with hardware
devices

10/4/13 www.robertfelten.com

QHash <T>
•  QHash stores keys in arbitrary order

–  Use instead of QMap when order of entries does not
matter

–  QHash provides faster lookups than QMap, because
QMap stores (key,value) pairs in sorted order by key

–  Automatically expands or shrinks table to provide fast
lookups without wasting too much memory

10/4/13 www.robertfelten.com

Implicitly Shared Container
•  QHash is implicitly shared

–  You can copy a QHash table, or return by value from
a function – very fast. No actual copy is done.

–  Only when a shared instance is modified will it be
copied – in linear time.

10/4/13 www.robertfelten.com

Diffs between QMap and QHash
–  QList<T> values() const

•  returns a list containing all the values in the hash, in
arbitrary order.

–  QList<Key> keys(const T & value)
•  returns list containing all keys associated with value value
•  in arbitrary order
•  Slow (linear time)

–  iterator erase (iterator pos)
•  removes the (key,value) pair pointed to by pos, returns

iterator to next item in hash.
–  Can be safely called while iterating

10/4/13 www.robertfelten.com

QHash Fine Tuning
•  These functions control the QHash internal table

–  Use rarely, if ever.
•  QHash automatically shrinks or grows for good performance

–  int capacity()
•  returns number of buckets in internal hash.

–  void reserve(int size)
•  ensure that QHash internal hash table contains at least size

buckets.
•  Used to avoid repeated allocation for large hash tables.

–  squeeze()
•  Reduces size of internal hash table to save memory

10/4/13 www.robertfelten.com

QHash Operators
–  bool operator== (const QHash<Key, T) &other)

•  returns true if other is equal to this hash, i.e. contain the
same (key,value) pairs.

–  bool operator!= (const QHash<Key, T>& other)
•  returns true if other is not equal to this hash

–  QHash<key, T> & operator= (const QHash<Key, T>
&other)

•  assigns QHash other to this one.

10/4/13 www.robertfelten.com

Controlling Hash Keys
•  uint qHash(type key)

–  returns the hash value for key
–  Note – this function is overloaded for all the different

types, i.e.
•  char, uchar, signed char, ushort, short, uint, int, ulong, etc.)

10/4/13 www.robertfelten.com

QStack
•  Derived from a QVector

–  Implements Last In / First Out (LIFO)
–  Has all the capabilities and functions of a QVector,

plus the following:
•  T pop()

–  Removes the top item from the stack and returns it.
•  void push(const T & t)

–  Adds element t to the top of the stack.
–  This is the same as QVector::append().

•  T &top() / const T &top() const
–  Returns a reference to the stack's top item.
–  This is the same as QVector::last().

10/4/13 www.robertfelten.com

QQueue
•  Derived from a QList.

–  Implements First In / First Out
•  QList already does that anyway
•  New functions added only for convenience

–  Contains all the functions and features of a QList, plus
the following:

•  T dequeue()
–  removes the head item in the queue and returns it.
–  This is the same as QList::takeFirst()

•  void enqueue(const T &t)
–  Adds value t to the tail, same as QList::append()

•  T &head(), const T & head() const
–  same as QList::first()

10/4/13 www.robertfelten.com

QString
•  QStrings are the “elephant in the room”

–  We haven’t talked about it yet

•  It’s simply the most amazing, powerful, versatile,
usable string class I’ve ever seen, or hope to
see

•  Related Containers
–  QString – basic string
–  QStringList – essentially QList<QString>
–  QByteArray – array of bytes that can be null

terminated char* or contain 0s.
–  QChar – 2-byte character

10/4/13 www.robertfelten.com

QString
•  stl::string contains an array of 1-byte char.
•  QString contains an array of 2-byte QChars

–  each representing one 4.0 Unicode character.
•  Unicode supports international standard characters

–  If you need an array of raw bytes, you can use
QByteArray

–  functions are available to convert QString to ASCII,
Latin1, Utf8 or Local8Bit (which converts to the
system’s local environment)

10/4/13 www.robertfelten.com

QString Construction
•  Construct from QChar*, Qchar, char*, char,

QByteArray, and others
•  append from various sources
•  arg() constructs strings from other types

–  Example
–  arg(int a, int fieldWidth, int base, const QChar fillChar)

•  int value = 100;
•  QString abc = QString(“This is value as integer %1, as hex

0x%2, as octal %3h, and as binary%4b”)
.arg(value)
.arg(value, 0, 16)
.arg(value, 0, 8)
.arg(value, 0, 2);

–  abc = "This is value as integer 100, as hex 0x64, as octal 144h,
and as binary 1100100b"

10/4/13 www.robertfelten.com

More constructors
–  setNum(type, base)

•  QString a;
•  int value = 5;
•  a.setNum(value, 16);

–  QString number(type n, char format, int precision);
•  overloaded for all number types, int, double, etc.
•  format e, E, f, g, G

10/4/13 www.robertfelten.com

Substrings
•  Substrings

–  chop(int n)
•  returns n chars from end of string

–  mid (int pos, int n)
•  returns n characters starting at pos (n = -1, default, returns to

end of string)

–  simplified()
•  removes beginning and ending whitespace, and internal

multiple whitespace characters

10/4/13 www.robertfelten.com

Really cool substrings
•  QStringList split (QString sep, behavoir)

–  Splits the string into a QStringList of substrings
whenever sep appears.

•  behavior indicates whether case of sep should be matched
•  note – deletes the separator in the QStringList

–  Also overloaded to accept a regular expression
instead of a QString

•  section(Qstring sep, int start, int end, flags)
•  extracts sections of a string, separated by sep

•  QString QStringList::join(QString sep)
–  Combines strings in a QStringList to a single QString

(inserting sep between each)
10/4/13 www.robertfelten.com

Conversions
•  Conversions from strings

–  toInt(), toDouble(), toLongLong(), etc.
–  data() – returns QChar*

10/4/13 www.robertfelten.com

Functions
•  compare()
•  contains(Qstring, char, etc.)
•  endsWith()
•  indexOf()
•  lastIndexOf()
•  length()

10/4/13 www.robertfelten.com

Manipulations
•  fill()
•  leftJustified()
•  insert()
•  append()
•  prepend()
•  replace()
•  rightJustified()
•  clear()

10/4/13 www.robertfelten.com

QString Operators
•  All the usual suspects

–  +, +=, ==, =, <, <=, >, >=, <<

•  All the STL-style iterators are there

10/4/13 www.robertfelten.com

Qt Resources
•  Just type Qt into Google.
•  qt-project.org is the main home page

–  Provides Downloads of the SDK
•  Open source or license version includes technical support
•  The download contains compilable and runnable sample

demos for almost every aspect of Qt
•  You can use a demo as the basis for writing your own

software

–  Tutorials
–  Forum and Wiki
–  Bug Reports

10/4/13 www.robertfelten.com

Questions
•  Questions?

10/4/13 www.robertfelten.com

